Termination w.r.t. Q of the following Term Rewriting System could be proven:
Q restricted rewrite system:
The TRS R consists of the following rules:
2nd1(cons2(X, n__cons2(Y, Z))) -> activate1(Y)
from1(X) -> cons2(X, n__from1(s1(X)))
cons2(X1, X2) -> n__cons2(X1, X2)
from1(X) -> n__from1(X)
activate1(n__cons2(X1, X2)) -> cons2(X1, X2)
activate1(n__from1(X)) -> from1(X)
activate1(X) -> X
Q is empty.
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
2nd1(cons2(X, n__cons2(Y, Z))) -> activate1(Y)
from1(X) -> cons2(X, n__from1(s1(X)))
cons2(X1, X2) -> n__cons2(X1, X2)
from1(X) -> n__from1(X)
activate1(n__cons2(X1, X2)) -> cons2(X1, X2)
activate1(n__from1(X)) -> from1(X)
activate1(X) -> X
Q is empty.
Q DP problem:
The TRS P consists of the following rules:
ACTIVATE1(n__cons2(X1, X2)) -> CONS2(X1, X2)
2ND1(cons2(X, n__cons2(Y, Z))) -> ACTIVATE1(Y)
ACTIVATE1(n__from1(X)) -> FROM1(X)
FROM1(X) -> CONS2(X, n__from1(s1(X)))
The TRS R consists of the following rules:
2nd1(cons2(X, n__cons2(Y, Z))) -> activate1(Y)
from1(X) -> cons2(X, n__from1(s1(X)))
cons2(X1, X2) -> n__cons2(X1, X2)
from1(X) -> n__from1(X)
activate1(n__cons2(X1, X2)) -> cons2(X1, X2)
activate1(n__from1(X)) -> from1(X)
activate1(X) -> X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
ACTIVATE1(n__cons2(X1, X2)) -> CONS2(X1, X2)
2ND1(cons2(X, n__cons2(Y, Z))) -> ACTIVATE1(Y)
ACTIVATE1(n__from1(X)) -> FROM1(X)
FROM1(X) -> CONS2(X, n__from1(s1(X)))
The TRS R consists of the following rules:
2nd1(cons2(X, n__cons2(Y, Z))) -> activate1(Y)
from1(X) -> cons2(X, n__from1(s1(X)))
cons2(X1, X2) -> n__cons2(X1, X2)
from1(X) -> n__from1(X)
activate1(n__cons2(X1, X2)) -> cons2(X1, X2)
activate1(n__from1(X)) -> from1(X)
activate1(X) -> X
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph contains 0 SCCs with 4 less nodes.